

1. はじめに

今回のテーマは「光と磁気」です(文献1). 光が物質を透 過するとき,あるいは、物質で反射されるとき,磁場によっ て光の状態が変化を受ける効果を磁気光学効果とよびます. 透過光の磁気光学効果はファラデー効果、反射光の磁気光学 効果は磁気カー効果とよばれています.磁石と聞くと、光が 通らないというイメージを受けるかもしれませんが、光ファ イバー通信で光を一方通行にする光アイソレータには赤外線 が透過する磁石である磁性ガーネット結晶が使われていま す.今回は、磁気光学効果の原理と応用について説明します.

2. 19世紀に発見された磁気光学効果

化学分野の方にもおなじみの英国の科学者ファラデーは、 光は電磁波であるから光も磁気の影響を受けるはずだと考 え、図1に示すように、ガラス棒に光路と平行に磁場を加え る実験をしました.すると、入射光の直線偏光が回転するこ とを見いだしました.ガラスに限らず多くの物質を磁場中に 置くと直線偏光が回転します.これを磁気旋光とよび、回転

角をファラデー回転角とよびます.出射光は正確には主軸が 回転した楕円偏光です.楕円偏光をつくる性質を磁気円二色 性とよびます.磁気旋光と磁気円二色性を併せてファラデー 効果といいます.

ガラスのように自発磁化をもたない物質のファラデー回転 角θ_Fは磁場**H**と光路長1に比例するので、

$$\theta_{\rm F} = V l H \qquad (1)$$

と書くことができます. ここに比例係数Vはヴェルデ定数と よばれます. 表1にいくつかの物質のヴェルデ定数を掲げま す. たとえば,長さ1mのガラス棒に100 A/m (=1.26 Oe) の磁場をかけたときのファラデー回転角は2.4 min (0.04°) です.90°の回転角を得るには,225 kA/m (=2835 Oe)の磁 場が必要です.

表1 いくつかの非磁性物質のヴェルデ定数(文献2)

状態	媒体	V (min A ⁻¹)
気体	酸素O2	$7.598 \cdot 10^{-6}$
	窒素N ₂	$8.861 \cdot 10^{-6}$
	メタンCH4	$2.415 \cdot 10^{-5}$
液体	エチルアルコールC ₂ H ₅ OH	$1.41 \cdot 10^{-2}$
	水H ₂ O	$1.645 \cdot 10^{-2}$
	クロロホルム CHCl3	$2.06 \cdot 10^{-2}$
固体	蛍石 CaF2	1.12 · 10 ⁻²
	水晶SiO ₂ (//c軸)	$2.091 \cdot 10^{-2}$
	クラウンガラス	$2.4 \cdot 10^{-2}$
	塩化銅CuCl [*]	$2.5 \cdot 10^{-1}$
	硫化亜鉛ZnS	2.84 · 10 ⁻¹

† 測定波長(*) 546.1 nm. ほかは 589.3 nm

物質名	旋光角 (deg/cm)	測定波長 (nm)	測定温度 (K)	印加磁場 (T)
Fe	$3.825 \cdot 10^{5}$	578	室温	2.4
Co	1.88 · 10 ⁵	546	室温	3
Ni	1.3 · 10 ⁵	826	120	0.27
MnSb	2.8 · 10 ⁵	500	室温	
MnBi	5.0 · 10 ⁵	633	室温:	
Y ₃ Fe ₅ O ₁₂	$2.5 \cdot 10^2$	1150	100	
Gd2BiFe5O12	1.01 · 10 ⁴	800	室温	
YFeO3	$4.9 \cdot 10^{3}$	633	室温	
NdFeO ₃	4.72 · 104	633	室温	
CrBr ₃	1.3 · 10 ⁵	500	1.5	
EuO	5.0 · 10 ⁵	660	4.2	2.08
CdCr ₂ S ₄	$3.8 \cdot 10^3$	1000	4	0.6

表2 代表的な磁性体のファラデー回転角(文献1)

3. 強磁性体の磁気光学効果

表2は強磁性体やフェリ磁性体の磁気飽和状態での光路長 1 cm 当たりのファラデー回転角を示したものです. 磁気的 に飽和した鉄のファラデー回転角は1 cm 当たり38万度に達 します. もちろん1 cm もの厚さの鉄を光は透過しませんが, 薄膜をつくればファラデー回転を観測することが可能なので す. たとえば30 nmの鉄薄膜では光は約70%透過し,ファラ デー回転角は約1°となります.

Fe, Co, Ni, MnSb, MnBi はいずれも金属強磁性体なのでバ ルクでは光が透過しません。磁性ガーネット ($Y_3Fe_5O_{12}$, Gd₂BiFe₅O₁₂), オルソフェライト (YFeO₃, NdFeO₃) などで は, バンドギャップがあり光が通りますが, Fe³⁺の配位子場 遷移により可視光が吸収され, 赤外光が透過します. このほ かCrBr₃, EuO, CdCr₂S₄のいずれも光が通ります.

強磁性体の磁気飽和時のファラデー回転角は物質定数です が、飽和していない場合には、磁化に関係する量となりま す.したがって、ファラデー効果を用いて磁化曲線を測るこ とができます.

表3 代表的な磁性体の極カー回転角(文献1)

物質名	カー回転角 (deg)	測定波長 (nm)	測定温度 (K)	印加磁場 (T)
Fe	0.87	1653	室温	
Co	0.85	2000	室温	
Ni	0.19	400	室温	
Gd	0.16	288	室温	
MnBi	0.70	652	室温	
CoS ₂	1.1	1550	4.2	0.4
Fe ₃ O ₄	0.32	1240 -	室温	
CrBr ₃	3.5	428	4.2	
EuO	6	590	12	
USb _{0.8} Te _{0.2}	9	1550	10	4.0
CoCr ₂ S ₄	4.5	1771	80	
アモルファス GdCo	0.3	652	室温	
PtMnSb	2.1	708	室温	1.7

軟磁性体は保磁力が小さく,初磁化曲線の直線性がよいの で,ファラデー回転角が外部磁場に比例することを利用し て,比例係数からヴェルデ定数を定義して使うことがありま す.

4. 磁気カー効果

磁気カー効果は、光が磁性体による反射されるときに受け る何らかの効果のことです。磁気カー効果には、図2に示す ように (a) 極カー効果、(b) 縦カー効果、(c) 横カー効果の3 種類あります。

極カー効果は磁化(*M*)が反射の法線方向に向いている場 合,縦カー効果は磁化が入射面内にある場合です.一般には 入射した直線偏光は楕円偏光になり楕円の長軸がもとの偏光 方向から回転します.このときの回転角をカー回転角,楕円 偏光の短軸と長軸の比をカー楕円率角とよびます.横カー効 果は磁化が入射面に垂直の場合で,偏光の回転は起きず,磁 化の向きに依存して反射光強度が変化します.表3は代表的 な強磁性体の極カー効果の回転角θ_Kをまとめたものです. カー回転角はあまり大きくありません.FeもCoもθ_Kは1° より小さな値です.

5. 自然活性と磁気光学効果

水晶やブドウ糖液に直線偏光を入射すると, 偏光が回転し ます. これを自然旋光性といいます. 酒石酸の水溶液に直線 偏光を入射すると楕円偏光になりますが, この性質を円二色 性 (CD) といいます. 有機化学の分野ではキラリティーを 決めるのにCDが使われています. 旋光性と円二色性を併せ

図3 a) 自然旋光性と、b) ファラデー回転(文献1)

て光学活性とよびます、物質の分子構造などによって生じる 光学活性を自然活性とよびます.

自然活性とファラデー効果はどのような違いがあるので しょうか、図3は自然旋光性とファラデー回転の違いを示す ものです。自然旋光性では図3aに示すように、直線偏光が ブドウ糖液を進むと光の電場ベクトルが回転しますが、鏡で 反射させると光は逆方向に回転しもとに戻ってしまいます. このような性質を「相反性」といいます.

一方、磁場中の物質を通ってファラデー回転を受けた光の 電場ベクトルが鏡で反射され、再びファラデー回転を受ける と、図3bのように、電場ベクトルは2倍の回転を受けます。 これを「非相反性」といいます.

6. 旋光性と円二色性はなぜ起きるか

図4は旋光性と円二色性がなぜ起きるかを示す図です。 直線偏光の電場ベクトルは図4aの上下方向に直線的に振 動していますが、振幅と回転速度が同じで回転方向だけ異 なる右円偏光Rベクトルと左円偏光Lに分解することができ ます。

図4bのように、物質中で、LベクトルとRベクトルの位相 角に違いがあると、合成ベクトルの軌跡は、入射光の偏光方 向から傾いた直線偏光となります. 右円偏光の位相角をθ+, 左円偏光の位相角をθ_とすると、その傾きθ_rは

$$\theta_{\rm F} = \frac{-(\theta_+ - \theta_-)}{2} \tag{2}$$

となります. これが旋光性です. 光の角振動数ω, 右・左円

Rの振幅がL振幅より大きいと RとLの位相と振幅が異なると の合成した光は楕円偏光になる 傾いた楕円偏光になる

図4 旋光性と円二色性の説明図(文献1)

偏光に対する屈折率をそれぞれn+. n-, 光路長lとすると、 位相角は $\theta_+ = \omega n_+ l/c$ なので

$$\theta_{\rm F} = -\frac{\omega \,\Delta n \,l}{2c} \tag{3}$$

となり、右・左円偏光の屈折率の差が回転角を与えることが わかります.

一方、図4cのようにRベクトルとLベクトルの振幅に違い があると、合成ベクトルの軌跡は楕円を描きます、この性質 を円二色性とよびます. 楕円の短軸と長軸の比の逆正接を楕 円率角といいます.

Rベクトルの振幅をE+、Lベクトルの振幅をE_とすると 楕円率角n_Fは,

$$\eta_{\rm F} = \tan^{-1} \left\{ \frac{(E_+ - E_-)}{(E_+ + E_-)} \right\} \tag{4}$$

で与えられます、光の角振動数ω、右・左円偏光に対する消 光係数をそれぞれκ+,κ_,光路長1とすると,

$$\eta_{\rm F} = \frac{\frac{(e^{-\frac{\omega\kappa+l}{c}} - e^{-\frac{\omega\kappa-l}{c}})}{(e^{-\frac{\omega\kappa+l}{c}} + e^{-\frac{\omega\kappa-l}{c}})} \approx -\frac{\omega\Delta\kappa}{2c} l \qquad (5)$$

ここに $\Delta \kappa = \kappa_{+} - \kappa_{-}$ は右・左円偏光の消光係数の差です. このように、左右円偏光に対する屈折率の差が旋光性を与 え、消光係数の差が円二色性を与えます.

> 2020年12月 現代化学

68

7. 磁気光学効果の電磁気学による説明

磁気光学効果は、磁場中の物質において、右・左円偏光に 対する屈折率および消光係数に差が生じる現象です.これを 説明するために誘電率のテンソルを導入します.電磁気学に なじみのない読者は、結果の式⑨まで読み飛ばしていただい ても結構です.

等方性の物質に磁場が光の進行方向(2方向)に加わり、磁 化Mが生じたとします.光の電場ベクトルEは2軸に垂直な 面内にあるとし、このとき物質に生じる電東密度Dは

の式で表されます.ここに、 ϵ_0 は真空の誘電率、括弧の中の 3行3列の行列は比誘電率テンソルです.

磁場によって物質内に磁化Mが生じたとすると、⑥式のテ ンソルの対角成分 $\varepsilon_x = \varepsilon'_x + i\varepsilon''_x$ および $\varepsilon_x = \varepsilon'_x + i\varepsilon''_x$ はMの 偶数次のべき級数で展開できます.一方、非対角成分 $\varepsilon_y = \varepsilon'_y + i\varepsilon''_y$ はMの奇数次のべき級数で展開できます.このと きマクスウェルの方程式は下の二つの式で表されます.

$$\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t} = -\mu_0 \frac{\partial \boldsymbol{H}}{\partial t}$$
$$\nabla \times \boldsymbol{H} = -\frac{\partial \boldsymbol{D}}{\partial t} \varepsilon_0 \begin{pmatrix} \varepsilon_{xx} & \varepsilon_{xy} & 0\\ -\varepsilon_{xy} & \varepsilon_{xx} & 0\\ 0 & 0 & \varepsilon_{zz} \end{pmatrix} \frac{\partial \boldsymbol{E}}{\partial t} \quad (7)$$

 $e^{-i\omega(t-Nz/c)}$ のかたちで時間・空間に依存する電場*E*,磁場 Hを考えます.Nは複素屈折率で屈折率nと消光係数 κ を 使って $N=n+i\kappa$ と表されます.

式⑦に代入すると*E*, *H*についての固有方程式が得られ, 解くと*N*の固有値として次式を得ます.

$$N_{\pm}^{2} = \varepsilon_{\rm xx} \pm i\varepsilon_{\rm xy} \tag{8}$$

差を取ると

$$\frac{(N_{+}^{2}-N_{-}^{2})}{2} = N\Delta N = i\varepsilon_{xy} = -i\varepsilon''_{xy} \pm i\varepsilon'_{xy}$$

$$\Delta N = \Delta n + i \Delta \kappa = \frac{-\varepsilon'_{xx} + i\varepsilon'_{xy}}{n + i\kappa}$$

ファラデー回転角とファラデー楕円率は、透明領域で用いる のでκ=0として次式のように誘電率テンソルの非対角要素 ε_{xx}で表されます.

$$\begin{split} \theta_{\rm F} &= \frac{\omega \varepsilon'_{xy} l}{2nc} \\ \eta_{\rm F} &= \frac{-\omega \varepsilon'_{xy} l}{2nc} \end{split}$$

8. 誘電率の量子論

誘電率とは、外部から高周波の電界という摂動を加えたと きに、どのくらい電荷の偏りが生じるのかを示すものです. 摂動を受ける前の物質では、正電荷(原子核)と負電荷(電 子雲)の分布の中心が一致しています.ここに外部から電磁 波が入ると、その電界の摂動によって電子雲の分布が変形す るので、正電荷と負電荷の分布の中心がずれます.これに よって電気分極が生じます.電磁波の電界はプラスとマイナ スに振動していますから、電気分極もそれに合わせて振動し ます.

電気分極をもたらしている電子雲の分布の変形を,図5に 従って量子論によって解釈してみましょう. 摂動を受ける前 の物質中の電子の固有状態は,飛び飛びのエネルギー固有値 をもついくつかの波動関数 |0>, |1>, |2>……で表されます が,通常は基底状態 |0>にあって,原子核のまわりに偶関数 的な分布をしています.ここでエネルギー準位の差のエネル ギーをもつ光を吸収すると,励起状態の波動関数 |1>, |2>に 遷移しますが,このとき波動関数の形が変わります.

励起状態には届かない程度のエネルギーをもつ光を受けた 場合には遷移は起こらず、光の電界の摂動を受けて、励起状 態 $|1\rangle$, $|2\rangle$ -----の波動関数が基底状態の波動関数 $|0\rangle$ に混じ ることで電子雲の形が変形します。これによって電気分極 が誘起されると考えるのです。励起状態の混じりやすさは、 基底状態 $|0\rangle$ と励起状態 $|n\rangle$ との間の電気双極子遷移確率 $|\langle 0|x|n\rangle|^2$ に比例し、光のエネルギー ω から基底状態 $|0\rangle$ と励 起状態 $|n\rangle$ のエネルギー差 ω_{n0} を引いたものに反比例します。

計算の詳細は参考書に譲り,エネルギーが飛び飛びの準位 で与えられるような局在電子系における誘電率の対角成分 は,

$$\varepsilon_{xx}(\omega) = 1 - \frac{N_0 q^2}{m \varepsilon_0} \sum_n \frac{(f_x)_{n0}}{(\omega + i/\tau)^2 - \omega_{n0}^2} \quad (0)$$

と表すことができます.ここに (f_x)_{n0}は基底状態|0)から励 起状態|1)への電気双極子遷移の振動子強度で

図5 電気分極の量子論による解釈(文献3)

図6 軌道角運動量の変化を伴う遷移の選択則(文献3)

$$(f_x)_{n0} = \frac{2(m\omega_{n0})}{he^2} |\langle 0|x|n\rangle|^2 \qquad (1)$$

によって表されます.

一方,非対角成分 ε_{xy} は、図6に示すように右まわり、左ま わりに回転する円偏光電場の摂動によって、軌道角運動量 L_z をもたない基底状態に、軌道角運動量量子数 L_z が1、または -1であるような励起電子の回転する電子状態が混じり込ん でくることによって生じます、式を使って表すと、

$$\varepsilon_{xy}(\omega) = \frac{iN_0 q^2}{2m \varepsilon_0} \sum_n \frac{\omega_{n0} \{(f_+)_{n0} - (f_-)_{n0}\}}{\omega_{n0} \{(\omega + i/\tau)^2 - \omega_{n0}^2\}} \quad (2)$$

のようにローレンツ型の分散曲線で表されます.ここに $(f_+)_{n0}, (f_-)_{n0}$ はそれぞれ基底状態 $|0\rangle$ と励起状態 $|n\rangle$ との間の直線偏光,右円偏光および左円偏光に対する電気双極子遷移の振動子強度で,

$$(f_{\pm})_{n0} = \frac{m \omega_{n0} |\langle 0| x \pm i y | n \rangle|^2}{h e^2}$$
 (3)

で与えられます. $\langle 0 | x \pm iy | n \rangle$ は基底状態 $|0\rangle$ と励起状態 $|n\rangle$ との間の円偏光による遷移行列です. +が右円偏光, -が左 円偏光に対応します. 磁化は振動子強度の差 { $(f_+)_{n0} - (f_-)_{n0}$ } に影響を与え, 磁気光学効果をもたらします.

式⑩から,誘電率の対角成分の実数部は分散型,虚数部 は吸収型のスペクトルを示すことがわかります.一方,非対 角成分について,式⑫を見ると,対角成分とは逆に実数部が 吸収型,虚数部が分散型になっています. ー例として、図7aに示すような電子構造を考えます. 基 底状態の軌道角運動量L=0,励起状態の軌道角運動量L=1とします.磁化のないとき、右円偏光と左円偏光に対する遷 移の差がないので磁気光学効果は生じません.スピン軌道相 互作用によって、励起状態の軌道縮退が解け、図7a右図に示 すように右円偏光による遷移の中心の振動数 ω_1 と左円偏光 による遷移の中心の振動数 ω_2 が異なってきます.これに よって、図7bに示すように、誘電テンソルの非対角成分のス ペクトルは、実数部は分散型、虚数部は左右に翼のあるベル 型になるのです.

9. 光通信と光アイソレータ

あらゆるものがインターネットにつながる IoT時代を迎え 世界の情報量は2013年の4 ZB (ゼタバイト=10²¹バイト)か ら2020年中には40 ZBを超えると予想されています. イン ターネットを支えているのは光ファイバー通信です. 図8 は,光ファイバー通信の仕組みを表す概略図です(文献4). さまざまな情報機器からの電気信号は,半導体レーザーに よって光信号に変換され,光ファイバーによって長距離先ま

2020年12月 現代化学

70

で伝達されます. この光信号はフォトダイオードで受信さ れ,電気信号に変換して情報機器に伝達されます. 光ファ バー網の分岐点やさまざまな光学素子から反射された戻り光 が半導体レーザーに入射するとノイズが発生し通信に使えま せん. 戻り光をカットして光を一方通行にするのが光アイソ レータです.

図9に示すように、光アイソレータは、偏光軸が45°傾いた 二つの偏光子 $P_1 \ge P_2$ でファラデー回転子を挟んだ構成に なっています、ファラデー回転子としては、磁性ガーネット 結晶が使われています、永久磁石を用いて飽和磁化状態と し、レーザー光の波長において直線偏光が45°回転するよう 光路長が調整されています、図9のように入射光は偏光子 P_1 によって直線偏光にされ、ファラデー回転子を透過します、 入射直線偏光はこの回転子によって正確に45°の回転を受 け、透過方向が鉛直から45°傾けておかれた第2の偏光子 (検光子) P_2 を通してファイバー光学系に導かれます、戻り 光はさまざまの偏光成分をもっていますが、このうち鉛直か ら45°傾いた成分のみが P_2 を透過します、この偏光成分は、 回転子によってさらに45°の旋光を受けて、 P_1 の透過方向と は垂直に向いた偏光となるため、光源側には光が戻らないの です、

10. 磁気光学によるイメージング

磁気光学効果を使うと磁区を観察することができます.こ の方法は、磁気力顕微鏡(MFM)やローレンツ電子顕微鏡に 比べると空間分解能が劣るものの、試料表面で反射された光

図9 光アイソレータの仕組み(文献1)

の偏光状態から試料の磁化情報を得る方法のため、測定の簡 便性、迅速性で優位性があります.試料が光を透過する場合 はファラデー効果を、透過しない場合はカー効果(磁化の向 きが試料表面に垂直の場合は極カー効果を、面内の場合は縦 カー効果)を用います.

図10は縦カー効果の測定原理です.反射偏光は検光子で 磁区のコントラストに変換されます(文献5).磁気カー効果 の旋光角は、第4節で述べたようにあまり大きくありません が、図11に示す円偏光変調法を用いると高感度のイメージを 観測することができます(文献6).この方法では、液晶素子 に加える電圧を変化させ、右円偏光(RCP)、直線偏光(LP)、 左円偏光(LCP)の3枚の光学像をCCDカメラで撮影し画像 上のすべての点において、同じ位置のピクセルの光強度 $I_{\rm RCP}$, $I_{\rm LP}$, $I_{\rm LCP}$ を用いて、ファラデー効果およびカー効果とも に回転角 θ と楕円率 η を計算します.こうして得られた θ と η から画像を再構成することによって、回転角と楕円率の画像 が得られます.図12はこの顕微鏡で観察したY₂BiFe₄GdO₁₂ 薄膜の磁区が磁場によって成長していく様子です(文献7).

図10 縦カー効果を用いた面内磁区のイメージング(文献5)

図11 円偏光変調法を用いた高感度磁気イメージング(文献5)

また、この磁気光学顕微鏡と、透明で磁気光学効果の大き な磁気転写膜を組合わせることによって、磁場分布の測定が 可能です。磁気転写膜に磁場分布を転写し、磁気光学効果を 利用して可視化するのです。

図13に、超伝導体MgB₂に磁束が侵入する様子をこの方法 で観察したものを示します.(a)は転写膜がないときの画 像,(b)は転写膜を透過した画像です.試料に侵入したわず か10 mT(=100ガウス)の磁束が観測されています.(c)は (b)からビオサバールの法則を使ってMgB₂内部に誘起され た電流分布を画像化したものです(文献8).

11. おわりに

基礎講座「磁石に親しもう」の最終回として、「光と磁気」 を取上げました、ここでは光と磁気の結び付きのうち、磁気

図12 Y₂BiFe₄GdO₁₂に磁場を印加したときの磁区の変化(文献7)

転写膜には、Bi添加イットリウム鉄ガーネット薄膜を用い ている。

図 13 MgB₂の円形パターンに磁束が侵入するさまの画 像.a)転写膜なし,b)転写膜あり,c)電流分 布の計算結果(文献8)

光学効果に絞ってその原理を解説しましたが、やや難解だっ たと思います、詳しく知りたい方は、拙著(文献1)をご参 照ください。

ここでは、光と磁気の結び付きのうち、光磁気記録につい て紹介できませんでした.この技術は、MOディスクとして 実用化されました(文献9).MOディスクは記録容量の少な さから最近使われなくなりましたが、光磁気技術はハード ディスクの記録密度の限界を突破する光アシスト磁気記録 (HAMR)の基礎技術として、再評価されています。

「光と磁気」の研究対象には、「非線形磁気光学効果」や 「近接場磁気光学」などの新しい分野が加わりました(文献 10).最近では、「光とスピン」へとさらなる発展を遂げつつ あります(文献11).

6回にわたって基礎講座「磁石に親しもう」を連載しました.現代化学の読者が,磁性に関心をもって頂くきっかけに なれば幸いです.

参考文献

- 1. 佐藤勝昭 著,『光と磁気(改訂版)』,朝倉書店(2001).
- 2. 国立天文台 編, 『理科年表』, 丸善 (1990).
- 佐藤勝昭 著,『磁気工学超入門』,第4章4.2,共立出版 (2014).
- 西村憲一, 白川英俊 著, 『やさしい光ファイバ通信』, オーム社 (2003).
- 5. 竹澤昌晃, "電気学会論文誌A", 129, 565 (2009).
- 6. 石橋隆幸, "光学", 42, 13 (2013).
- 7. R. Zhao (In), Applied Surface Science, 223, 73 (2004).
- 8. K. Sato, T. Ishibashi, IEEJ Trans EIS, 124, 1 (2004).
- 9. 佐藤勝昭ほか 著,『光磁気ディスク材料』,工業調査会 (1993).
- 10. 菅野晩ほか 編,『新しい磁気と光の科学』,第6章,第8章 講談社サイエンティフィク (2001).
- 11. 佐藤勝昭, O plus E, 35, 704 (2013).