

Baku International Humanitarian Forum Round Table VII; Converging Technologies and Outlines of the Future Landmark Challenges of 21st Century

Research and Development of Renewable Energies in Japan after the Fukushima Nuclear Plant Disaster

Katsuaki Sato

Prof. emeritus Tokyo Univ. Agriculture and Technology Center for Research and Development Strategy (CRDS), Japan Science and Technology Agency (JST)

Fukushima Nuclear Plant Accident

- March 11, 2011 great Tsunami after the East-Japan Mega-quake hit the nuclear plant, leading to loss of all electric power supplies to the cooling system.
- Consequently, the melt-down of the nuclear fuel occurred, followed by the hydrogen explosion of housings of reactor.

Major nuke plant accidents

	Three Mile Island	Chernobyl	Fukushima Daiichi
Year.month.day	1979.3.28	1986.4.26	2011.3.11
Reactor type	PWR	graphite-moderated	BWR
INES level	Level 5	Level 7	Level 7
Core damage	45%	~ 100%	100(1),97(2),97(3)
Trigger	operation error	Violation of rules	earthquake/tsunami
Hydrogen explosion	In the container	In the reactor	housings
Evacuation area	8km	30km	20km
Radioactive exaust	Rare-gas: 9.25 × 10 ¹⁶ Bq iodine: 5.55 × 10 ¹¹ Bq	5.2 × 10 ¹⁸ Bq	7.7 × 10 ¹⁷ Bq
Schematic illustration	THEATOR BUILDING THEATOR BUIL		

Possibility of forecast and prevention of the Fukushima Daiichi accident?

- Probably Yes!
- Scholars of AIST warned the possibility of huge tsunami attack from ancient literatures.
- Nevertheless, TEPCO and administration ignored the report. They believed "Safety Myth" and never prepared for tsunami.
- They could have prepared to move the alternative power supplies to elevated positions to prevent the damage of tsunami.

What was done after the Accident

- Until the accident both promotion and regulation committees are under MITI.
- After the accident the regulation committee was moved under the Environment Ministry.
- Members of the committee were drastically changed involving specialists of geophysics.
- No Nuke plant has been under operation until now after the new regulation.
- Recently re-operation of one PWR plant in Kyushu is under consideration, despite many objections.

Scientists lost reliability of people. What should we do?

- Urgent problems on Fukushima Daiichi Plant and its environment
 - How to remove nuclear debris and close reactors.
 - How to manage and stop radioactive contaminated water flow to ocean.
 - How to manage used nuclear fuels and wastes.
 - How to clean radioactive substances from environment area.
- Without the solution of above problems people may continue to be uneasy and anxious, which cease proper communication between specialists and people.

Other problems to be solved

- Development of technologies to close reactors
- Nuclear Securities including interbational contribution to IAEA
- Nuclear fuel cycles: How to manage plutonium
- Funding system for nuclear R&D
- Regulation committes
- Relations between stakeholdrs
- Globalization with transparency
- Safety Technology
- Risk Communications and Managements
- Education and Training etc.

Energy problem after Fukushima

- Planned blackout of TEPCO area just after Fukushima accident
- Reoperation of unused petroleum an coal plants
- People become conscious of saving energies
- Big trade deficit threatens Japanese economy
- People's expectation for Renewable Energies becomes very strong

Electric power generation in Japan. (100 million kWh)

Renewable energy, accounted for 10.0% of Japanese power generation in FY2012; including 8.4% of hydraulic power.

From the slides prepared by Atsuhiko Kiba (NEDO) September 2, 2013

Fukushima Nuke Disaster

Long-term change in total supply from power-generating facilities of new energy except hydraulic power

• Since the introduction of the feed-in tariff scheme in 2012, the introduction of PV increased most.

Situation of renewable energy introduction in 2013 FY

Category	Before FIT introduction	After FIT introduction	
	Cumulative total(-2012.6)	2012.7-2013.3	2013.4-2014.2
Solar (Residential)	4.7GW	0.969GW	1.221GW
Solar (Non-residential)	0.9GW	0.704GW	5.052GW
Wind Power	2.6GW	0.063GW	0.015GW
Small Hydropower	9.6GW	0.002GW	0.004GW
Biomass	2.3GW	0.03GW	0.09GW
Geothermal	0.5GW	0.01GW	0
Total	20.6GW	1.769GW	6.381GW
		8.15GW	

After Whitepaper(2014FY) from Agency of Natural Resources and Energy under MITI

R&D Portfolio of NEDO for new energies

NEDO's Budget (FY2013) Total: 121.0 billion Yen (1,210 million US\$) R&D Budget for New Energy: 28.1 billion Yen (281 million US\$)

Category	Classification	Budget 2013 FY	
Renewable Energy	Solar Photovoltaic	9.3 billion yen (93 million US\$)	
	Biomass	3.6 billion yen (36 million US\$)	
	Wind power	5.0 billion yen (50 million US\$)	
	Ocean	2.5 billion yen (25 million US\$)	
	Geothermal	0.5 billion yen (5 million US\$)	
Hydrogen Tech.	Hydrogen &Fuel Cell	7.2 billion yen (72 million US\$)	
Total		28.1 billion yen (281 million US\$)	

PV R&D Roadmap in Japan (PV2030+)

Source: NEDO PV R&D Roadmap (PV2030+), 2009

Promotion of Green Innovation by JST's Strategic Basic Researches (1) CREST*

Category	Title	Supervisor
Energy carriers	Creation of Innovative Core Technology for Manufacture and Use of Energy Carriers from Renewable Energy Research	K. Eguchi
Phase interface science	Phase Interface Science for Highly Efficient Energy Utilization Research	N. Kasagi
Carbon dioxide utilization	Creation of essential technologies to utilize carbon dioxide as a resource through the enhancement of plant productivity and the exploitation of plant products	A. Isogai
Bioenergy Production	Creation of Basic Technology for Improved Bioenergy Production through Functional Analysis and Regulation of Algae and Other Aquatic Microorganisms	T. Matsunaga
Solar energy	Creative research for clean energy generation using solar energy	M. Yamaguchi
Water system	Innovative Technology and System for Sustainable Water Use	S. Ohgaki
Carbon dioxide emission control	Creation of Innovative Technologies to Control Carbon Dioxide Emissions	I. Yasui

CREST is a team-oriented research program aiming to generate breakthroughs with a significant impact on the development of science and technology and providing tangible benefits to society

Promotion of Green Innovation by JST's Strategic Basic Researches (2) PRESTO*

Category	Title	Supervosor
Energy carrier	Creation of Innovative Core Technology for Manufacture and Use of Energy Carriers from Renewable Energy	K. Eguchi
Phase Interface	Phase Interfaces for Highly Efficient Energy Utilization	N. Kasagi
Carbon dioxide utilization	Creation of essential technologies to utilize carbon dioxide as a resource through the enhancement of plant productivity and the exploitation of plant products	A. Isogai
Bioenergy production	Creation of Basic Technology for Improved Bioenergy Production through Functional Analysis and Regulation of Algae and Other Aquatic Microorganisms	T. Matsunaga
Solar Cells	Photoenergy conversion systems and materials for the next generation solar cells	S. Hayase
Chemical conversion	Chemical conversion of light energy	H. Inoue

*PRESTO(Precursory Research for Embryonic Science and Technology)

Promotion of Green Innovation by JST's Strategic Basic Researches (3) ALCA*

Solar Cell and Solar Energy Systems	14 projects
Superconducting Systems	8 projects
Electric Storage Devices	18 projects
Ultra Heat-Resistant Materials and High Quality Recycled Steel	13 projects
Innovative Energy-Saving and Energy-Producing Chemical Processes	13 projects
Innovative Energy-Saving and Energy-Producing Systems and Devices	7 projects
Next-generation Rechargeable Battery	4 projects
Energy Carrier	1 project

Solar Cell and Solar Energy Systems ALCA

Title	Researcher
Development of the high-efficiency photovoltaic rectenna	S. Nozaki
Development of organic inorganic hybrid high performance solar cells	
Electricity generation by combination of solar-pumped lasers and PV devices specially designed for monochromatic laser light.	T. Motohiro
Realization of all crystalline ideal structure of organic photovoltaics and efficiency maximization by utilizing co-evaporant induced crystallization method	Т. Кајі
Novel Thin Film Solar Cell Technologies for TW PV Generation	S. Niki
Integration of nanostructures in crystalline silicon solar cells for advanced management of photons and carriers	N. usami
Printable organic solar cell based on liquid crystal science	M. Ozaki
Development of environment-friendly solar cell made by clathrate compound of group VI elements	T. Kume
Crystal Growth and Interface Control Technology of Group IV Semiconductor Thin Films for Multi- Layered Solar Cell	O. Nakatsuka
Advanced solar energy utilization systems based on high-temperature photonics	H. Yugami
Artificial Photosynthesis System	S. Fukuzumi
Development of non-vacuum processing for high efficiency next-generation thin-film solar cells	A. Yamada
Smart Innovation on Nitride Semiconductor Solar Cells with Superstructure Magic Alloys: SMART	A. Yoshikawa
Spinodal Nanotechnology for Super-High Efficiency Energy Conversion	H. Katayama- Yoshida

Recent Development of Solar Cells

Best Research-Cell Efficiencies

Summary

- After the Fukushima Disaster Japanese Government changes the energy policy and energy saving and creation of new energies are encouraged.
- By introduction of FIT solar cells installation is enhanced very much resulting in renewable energy portion higher than 10%.