TUT Magnetic Materials Laboratory Seminar

豊橋技科大磁性研究室セミナー02/07/25

Recent Topics in Magneto-Optics Linear and nonlinear magneto-optical effects in Fe/Au and Co/Ru superlattices

磁気光学研究の最近の¥話題 Fe/Au, Co/Ru人工格子の線形および非線形磁気光学効果

Katsuaki Sato

Tokyo Univ. Agric. & Technol., Tokyo, Japan

佐藤勝昭 (東京農工大学工学部)

Introduction はじめに

- Two-types of superlattices
 - TM/Cu, Ag, Au →immiscible; abrupt interface (非固溶;急峻な界面)
 - TM/Pt, Pd→ miscible, gradual interface
 (固溶系:界面合金化)
- Superlattices and characteristic length (人工格子・多層膜と特性長)
 - L*~ λ '(light wavelength光の波長): MO enhancement
 - L*~ds(roughness界面の荒さ)→相互拡散、合金化
 - L*~ λ D(de Broglie wavelenth)→Quantum confinement 量子閉じこめ
 - L*~a (atomic size)→band modificationバンドの改変

Linear magneto-optical effect in Fe/Cu compositionally modulated multilayers Fe/Cu組成変調多層膜の磁気光学効果

- Layer thickness ~ wavelength [波長(λ')~層厚(d)]
 - Plasma enhancement (プラズマ端でのエンハンス効果)
 - Roughly explained by effective permeability (実効誘電 率)
 - Multiple reflection and interference(多重反射·干涉効果)
 - Unaccountable for d<a few nm (変調周期が数nm以下に なると説明できなくなる)

mutual diffusion and alloy formation at the interface

Experimental magnetooptical and reflectivity spectra in Fe/Cu multilayer with different layer thickness 種々の層厚をもったFe/Cu 組成変調多層膜の磁気光学 スペクトルおよび反射スペ クトル(実験値)

Virtual optical constant method(仮想光学定数の方

Calculated magnetooptical and reflectivity spectra in Fe/Cu multilayer with different layer thickness 種々の層厚をもったFe/Cu組成 変調多層膜の磁気光学スペク トルおよび反射スペクトル (計算値)

Modulation period dependence of Kerr rotation in Fe/Cu multilayers (▲△experiments,solid and broken line: calculation) Fe/Cu組成変調多層膜のカー回転角の変調周期依存性。

Magneto-optical Effect in Au/Fe/Au trilayer Au/Fe/Au三層超薄膜の磁気光学効果

- Layer thickness ~ de Broglie wavelength of electrons

 層厚が電子のドブロイ波長と同程度になった場合
- New magneto-optical transition in epitaxially grown Au(cap)/Fe(ultra thin layer)/Au(buffer)/MgO(substrate) trilayer structure MBE法でMgO基板上にエピタキシャル成長したAu(100)薄膜の 上にFe超薄膜を作製し、その上に保護層としてAuの薄い キャップ層をかぶせた三層膜における新しい光学遷移
- At first the optical structure was assigned to 2D-band. Afterward it was re-explained in terms of quantum confinement of electrons in Fe-layer 当初:2Dのバンドによると同定→その後、Fe層内での電子の 量子閉じこめによるとして説明された。

Kerr rotation spectra in Au/Fe/Au ultra thin films Au/Fe/Au超薄膜の磁気光学カー回 転スペクトルのFe層厚依存性

After Y. Suzuki (AIST)

Magneto-optical ellipticity at 4eV vs. thickness of Fe layer 4eVにおける1層あたりのカー楕円率のFe層厚依存性

Au-thickness dependence of Co/Au/Co Co/Au/Coの磁気光学効果のAu層厚依存性

After Y.Suzuki

Artificial ordered alloy of Fe/Au Fe/Au人工規則合金

- [Fe(1ML)/Au(1ML)]_N is a L1₀ type ordered alloy that does not exist in nature (Peritechtic system) [Fe(1ML)/Au(1ML)]_Nは天然には存在しないL1₀型の規則合金である。
- At interfaces in Fe/Au, L1₀ type Fe(1ML)/Au(1ML) exists
 [Fe(xML)/Au(xML)]_Nにおいても、Fe層とAu層の界面にはL1₀型Fe(1ML)/Au(1ML)が存在
- New band structure appears due to hybridization FeとAuの間には電子の混成が生じ、新しいバンド構 造が出現している。

Atomic arrangement in a unit cell of Fe(1ML)/Au(1ML) with a L1₀ structure Fe(1ML)/Au(1ML)人工規則合金の結晶構造

整数・非整数層厚をもつFe/Au人工格子 Superlattices : [Fe(xML)/Au(xML)]_N with integer and non-integer layer thickness x=1, 1.25, 1.5, 1.75,1, 2.25, 2.5, 2.75, 3.25, 3.5, 3.75, 4, 6, 8, 10, 15

Retardation modulation technique 光学遅延変調法(円偏光変調法)

Magneto-optical spectrometer system 磁気光学スペクトル測定系

Magneto-optical Kerr spectra in Fe/Au superlattices Fe(xML)/Au(xML)人工格子における 磁気光学カー回転角のスペクトル

 $x=1\sim 5$

 $x = 6 \sim 15$

Calculated Kerr spectra in Fe/Au superlattices using abinitio band calculation 第1原理バンド計算によるFe(xML)/ Au(xML)人工格子の磁気光学スペクトル (山口による)

The structure around 4eV can be assigned to Au(5d \downarrow) to Fe(3d \downarrow) transition 4eV付近に見られる構造は、Auの 5d \downarrow バンドからAuの5f \downarrow バンドへ の遷移である。Auの5f \downarrow バンドは Feの3d \downarrow バンドと強く混成してお り、実質的にはAu(5d \downarrow)→Fe(3d \downarrow) 遷移と見なせる。

Peak position of Kerr rotation vs. modulation period Fe/Au人工格子の磁気光学スペクトルのピーク位置の変調周 期に対するプロット。

Dotted curve denotes the peak position in magneto-optical spectra of Au/Fe/Au ultrathin trilayer 点線は、超薄膜にお ける量子閉じ込め ピークの変調周期依 存性。

MSHG study of magnetism for surfaces and interfaces

Magnetic second harmonic generation (MSHG) has been applied to study of magnetic thin film and multilayer

Scheme

Fe/Au superlattices with a modulation of mono-atomic layers

MSHG technique was applied to Fe/Au superlattices

• For weak incident laser field $E(\omega)$: linear

$$P_i^{(1)} = \chi_{ij}^{(1)} \varepsilon_0 E_j \qquad \text{response}$$

- For strong incident laser field $\mathsf{E}(\omega)$:

$$P_{i} = \varepsilon_{0} (\chi_{ij}^{(1)} E_{j} + \chi_{ijk}^{(2)} E_{j} E_{k} + \chi_{ijkl}^{(3)} E_{j} E_{k} E_{l} + \cdots)$$

 Third rank tensor is not allowed in centrosymmetric materials.

Vonlinear

response

• Nonlinear polarization $P^{(2)}$ for incident field of $E = E_0 \sin \omega t$

$$P^{(2)} = \varepsilon_0 \chi^{(2)} \frac{E_0}{2} + \varepsilon_0 \chi^{(1)} E_0 \sin \omega t - \varepsilon_0 \chi^{(2)} \frac{E_0^2}{2} \cos 2\omega t + \cdots$$

Second harmonic generation (SHG)

Nonlinear magneto-optical effect measurement system

[Fe(3.5ML)/Au(3.5ML)] superlattice (Sin)

inear Kerr rotation & elliptic $\theta_{\rm K}^{(2)}$ = 17.2 ° $\eta_{\rm K}^{(2)}$ =3°

Result

Nonlinear Kerr rotation : $\Delta \phi$

Analyzer angle dependence

Azimuthal angle-dependence of MSHG

Azimthal angle-dependence of MSHG intensity for [Fe(3.75ML)/Au(3.75ML)] superlattice. $(P_{in} P_{out})$

Surface non-magnetic term

•SHG response causes an isotropic contribution only.

Bulk non-magnetic term

$$P_{i}(2\omega) = \chi_{ijk}^{(D)} E_{j}(\omega) E_{k}(\omega) + \chi_{ijkl}^{(Q)} E_{j}(\omega) \nabla_{l} E_{k}(\omega)$$

• For crystallographic contribution the electric quadrupole should be introduced to get four rank tensor.

 \implies SHG response causes an anisotropic contribution (parameter B).

Surface magnetization induced term

$$\chi_{ijk}^{s}(M) = \chi_{ijk}^{s}(0) + X_{ijkL}^{s}M_{L}$$

• The surface magnetic response comes from the electric dipole term expanded by magnetization and contributes to the parameter C.

Calculated azimuthal angle dependence of SHG and MSHG signals

input-output polarization	surface non-magnetic	bulk non-mangetic	surface magnetization-induced	sum
S _{in} -S _{out}	0	$ B\sin 4\phi ^2$	$ \pm A_{ss}\pm C\cos 4\phi ^2$	$ \pm A_{\rm ss}+B\sin4\phi\pm C\sin4\phi ^2$
S _{in} -P _{out}	$ \mathbf{A'_{sp}} ^2$	$ A_{sp} - B\cos 4\phi ^2$	$ \pm C\sin 4\phi ^2$	$ A_{\rm sp}-B\cos 4\phi\pm C\sin 4\phi ^2$
P _{in} -S _{out}	0	$ -B\sin 4\phi ^2$	$ \pm A_{ps}\mp C\cos 4\phi ^2$	$ \pm A_{\rm ps} - B\sin 4\phi + C\cos 4\phi ^2$
P _{in} -P _{out}	$ A'_{pp} ^2$	$ A_{pp}+B\cos 4\phi ^2$	$ \mp C\sin 4\phi ^2$	$ A_{\rm pp}+B\cos 4\phi \mp C\sin 4\phi ^2$

Kerr rotation calculated from parameters Axx,B,C $\Theta_{\rm K}^{(2)} = (\psi_+ - \psi_-)/2$

$$S_{in} \quad \tan 2\psi_{\pm} = \frac{2(A_{SP} - B\cos 4\phi \pm C\sin 4\phi)(\pm A_{SS} + B\sin 4\phi \pm C\cos 4\phi)}{(A_{SP} - B\cos 4\phi \pm C\sin 4\phi)^2 - (\pm A_{SS} + B\sin 4\phi \pm C\cos 4\phi)^2}$$

$$\mathbf{P}_{in} \quad \tan 2\psi_{\pm} = \frac{2(A_{PP} + B\cos 4\phi \mp C\sin 4\phi)(\pm A_{PS} - B\sin 4\phi \pm C\cos 4\phi)}{(A_{PP} + B\cos 4\phi \mp C\sin 4\phi)^2 - (\pm A_{PS} - B\sin 4\phi \pm C\cos 4\phi)^2}$$

Azimuthal angle-dependence of MSHG for a [Fe(3.5ML)/Au(3.5ML)] superlattice (Sin-Pout, Sin-Sout configuration)

The equation of the azimuthal angledependence by theoretical analysis

Sin-Pout

$$I^{SP} = \left| A^{SP} - \underline{B} \cos 4\varphi \pm \underline{C} \sin 4\varphi \right|^2$$

Sin-Sout

$$A^{SS} = \left| \pm A^{SS} \pm \underline{C} \cos 4\varphi + \underline{B} \sin 4\varphi \right|^2$$

A ^{SP} (surface nonmagnetic term)	= 460
A ^{ss} (surface nonmagnetic term)	= 100
B(bulk nonmagnetic term)	= 26
C(surface magnetic term)	= -88

Calculated and experimental patterns :x=3.5

Dots:exp. Solid curve:calc.

A^{SS}=100, B=26, C=-88

The fitting parameter of the azimuthal pattern (Sin-Pout)

$$I^{SP} = \left| A^{SP} - B \cos 4\varphi \pm C \sin 4\varphi \right|^2$$

Modulated rate x (ML) Fig. The fitting parameter of azimuthal angledependence for [Fe(xML)/Au(xML)] ($1.25 \le x \le 3.75$) superlattices.

Contribution of ASP term

- Surface nonmagnetic term
- · Dependence on focused beam power

Contribution of **B** term

- · Bulk nonmagnetic term
- The parameter B is constant for the modulation x.

Contribution of C term

- Surface magnetic term
- Decrease of the parameter C for the azimuthal patern rotation

Azimuthal angle dependence of the MSHG intensity for the anlyzer angle

Fe(1.25ML)/Au(1.25ML)

Analyzer angle = 30°

Analyzer angle = 60° Analyz (Pin-Pout)

Experimental azimuthal angle-dependence of nonlinear Kerr rotation and ellipcity for a Fe(3.75ML)/Au(3.75ML) superlattice.(Sin)

Fig. Calculated azimuthal angle-dependence of nonlinear Kerr rotation $\theta^{(2)}_{K}$ and ellipcity $\eta^{(2)}_{K}$ for a Fe(3.75ML)/Au(3.75ML) superlattice.

(a) Nonlinear Kerr rotation

• Azimuthal angle-dependence of nonlinear Kerr ellipticity is found to be sinusoidal.

(b) Nonlinear Kerr ellipticity

$$\eta_{K}^{(2)} = \frac{1}{2} \left[\tan^{-1} \left(\frac{I_{MAX}(+)}{I_{MIN}(+)} \right) - \tan^{-1} \left(\frac{I_{MAX}(-)}{I_{MIN}(-)} \right) \right]$$

- I: Analyzer angle dependence of the MSHG intensity
- Azimuthal angle-dependence of nonlinear Kerr ellipticity showed 45°-shift compared to Kerr rotation.
- Ellipticity $\eta^{(2)}_{\kappa}$ was about zero for the maximum $\theta^{(2)}_{\kappa}$ and the minimum $\theta^{(2)}_{\kappa}$.

Calculated azimuthal angle-dependence of nonlinear Kerr rotation and ellipcity for a Fe(3.75ML)/Au(3.75ML) superlattice.(Sin)

Azimuthal angle (deg.)

Fig. Experimental azimuthal angle-dependence of nonlinear Kerr rotation $\theta^{(2)}_{\kappa}$ and ellipcity $\eta^{(2)}_{\kappa}$ for a Fe(3.75ML)/Au(3.75ML) superlattice.

(a) Nonlinear Kerr rotation θ^{2}_{κ}

$$\tan \psi_{\pm} = \frac{2\left(A^{SP} - B\cos 4\varphi \pm C\sin 4\varphi\right)\left(\pm A^{SS} + B\sin 4\varphi \pm C\cos 4\varphi\right)}{\left(A^{SP} - B\cos 4\varphi \pm C\sin 4\varphi\right)^2 - \left(\pm A^{SS} + B\sin 4\varphi \pm C\cos 4\varphi\right)^2}$$
$$\bigoplus \quad \theta_K^{(2)} = \frac{\psi_+ - \psi_-}{2}$$

(b) Nonlinear Kerr ellipticity $\eta^{\scriptscriptstyle (2)}{}_{\!\scriptscriptstyle \rm K}$

 $I^{Sin}(\theta) = |P^{SP}\cos \theta + P^{SS}\sin \theta|^2$

I: Analyzer angle-dependence of MSHG intensity for Pin configulation.

$$\eta_{K}^{(2)} = \frac{1}{2} \left[\tan^{-1} \left(\frac{I_{MAX}(+)}{I_{MIN}(+)} \right) - \tan^{-1} \left(\frac{I_{MAX}(-)}{I_{MIN}(-)} \right) \right]$$

(b) Calculated pattern (Sin)

nonlinear Kerr rotation angle and ellipticity in [Fe(3.75ML)Au(3.75ML)]

Experimental and calculated patterns of Kerr rotation angle

Sin configuration: (a) Experimental data,

(b) Calculated using *parameters determined*

by fitting to the azimuth patterns

Nonlinear Kerr rotation angle of [Fe(xML)/Au(xML)] $(1.25 \le x \le 3.75)$ superlattices (Sin)

Modulated rate x (ML)

Fig. Nonlinear Kerr rotation angle of [Fe(xML)/Au(xML)] (1.25≤x≤3.75) superlattices [(a)Calculation, (b)Experiment]

Calculation and experimental result

Calculated nonlinear Kerr rotation angle $\theta_{K}^{(2)}$ using the fitting parameter A^{SP}, A^{SS}, B, C of the azimuthal pattern (The maximum $\theta_{K}^{(2)}$ was selected for azimuth angle)

- The experimental maximum $\theta_{K}^{(2)}$ for x=1.75 superlattice was 31.1°.
- The calculated $\theta_{K}^{(2)}$ reproduced the muximum $\theta_{K}^{(2)}$ for x=1.75 superlattice.

The nonlinear Kerr rotation was explained by theoretical analysis.

Linear magneto-optical spectra in Co/Ru superlattice Co(5ML)/Ru(5ML)の線形磁 気光学スペクトルの実験値と バンド計算による理論値

Fig. 2: The Kerr (a) and ellipticity (b) spectra of Co(5ML)/Ru(5ML) superlattice. For comparison, those of HCP Co are also shown. Experimental data of HCP Co are in Ref.[14]

NOMOKE in Co(5ML)/Ru(5ML)

Azimuthal angle dependence of MSHG in Co(5ML)/Ru(5ML)

Conclusion

 Magneto-optical spectra in Fe/Cu and Fe/Au system depends strongly on the thickness of the layers in comparison with characteristic length of the material: wavelength of light, de Broglie wavelength of electrons and atomic size. The four-fold pattern clearly reflects the symmetry of the MgO(100) substrate. This suggests that the Fe/Au superlattice is perfectly epitactic to the substrate.

 The azimuthal angle dependence was analyzed in terms of nonlinear electrical susceptibility tensor taking into account the magnetic symmetry of the superlattice.

> •The azimuthal pattern was explained by symmetry analysis, taking into account the surface nonmagnetic A, bulk non-magnetic B and surface magnetic C contributions.

• MSHG was shown to lead to a nonlinear Kerr rotation $\theta^{(2)}_{K}$ that can be orders of magnitude larger than its linear equivalent (0.2°), e.g., $\theta^{(2)}_{K}$ for x=1.75 was 31.1°

 We observed azimuthal angle-dependence of the nonlinear Kerr rotation for the first time.

 The azimuthal angle-dependence of the nonlinear Kerr rotation were explained using parameters determined from azimuthal patterns of MSHG response

Modulation period dependence of parameters:
A (Surface nonmagnetic) is large for short period
B (Bulk nonmagnetic) is nearly constant
C (Surface magnetic) becomes larger with modulation Period.

 Magneto-optical spectra of Co/Ru superlattice are much reduced from those of Co

- This can be explained in terms of electronic hybridization of electrons between Co and Ru
- Surface magnetic effect observed by MSHG is also found to be reduced.

Linear and nonlinear magneto-optical effect offer helpful tools to investigate symmetry and electronic structure of magnetic materials

Other topics

- Near-field Magneto-optics
- XMCD

What is Near Field Optics? 近接場とは

たもう1つの微小物体による散乱光

場

プローブの高さ制御

集光モード(a)と照射モード(b)

SNOMによる磁気光学測定

- 1991 Betzig: 光ファイバーをテーパー状に細めたプローブで光磁気記録・再生に成功
- 1992 Betzig: 超微細加工した金属細線リングの偏光像
- 多くの研究あるが、高解像度のMO-SNOM像 は得られていない
- 偏光をファイバを通して伝えるのが困難

SNOM-AFM

- SNOM-AFMモードを利用
- はじめ: クロスニコル法→コントラスト比とれない
- ・ 解決法: PEMによる偏光変調
- ファイバー特性の測定とよいプローブの選別
- 偏光伝達特性の補償
- 約0.1µmの解像度を達成

MO- SNOM (polarization modulation technique)

0.2µm マークのトポ像と磁気光学像

解像度の定義

トポ像

MO 像

ラインプロファイル

X線磁気光学効果

L吸収端の磁気円二色性

XMCD顕微鏡

X線顕微鏡によるMO膜観測

mark/space 0.2/0.20.1/0.10.05/0.05 0.1/0.70.05/0.75 0.8/0.80.4/0.40.2/0.2μm

1µm

X線顕微鏡で観察したGdFeの磁区

サニャックSNOM

ポンププローブ磁気光学測定

まとめ

- 磁気光学効果の基礎を、電磁気学的アプロー チでのべた。この効果が誘電率テンソルの非 対角成分から生じることがわかった。
- 誘電率テンソルの非対角成分は、量子論に基づいて電子エネルギー準位間の光学遷移により説明できることがわかった。
- 磁気光学スペクトルの実例を示し、それらが、 電子構造から予測可能であることを示した。