マグネティック・ナノイメージングと次世代磁気応用に関する研究会 2003.2.27

EB描画ダマシン法によるSi埋め込み 磁性体サブミクロン構造の作製と MFM観察と非線形磁気光学効果

21世紀COE「ナノ未来材料」推進研究室

東京農工大学 佐藤勝昭

協力者:石橋隆幸,森下義隆,纐纈明伯,松本剛,手塚智之,鶴我真紀子

Fabrication of permalloy nanostructure by Damascene technique

- ①Preparation of substrate: Spin-coating of ZEP resist with high etching resistance
- **2EB-exposition**: Write patterns by EB
- ③ **Development**: Formation of mask-pattern by development
- ④ Etching : By dry-etching process mask-pattern is transferred to the substrate
- **Deposition** of magnetic film: Deposition of magnetic films by sputter or evaporation
- ⑥Polishing: Obtain flat buried structure using chemicalmechanical polishing
- Process is simplified by abbreviation of lift-off and repeated spin-coating

[1]Dot size

100nm × 300nm rectangular dot with 300nmspacing 100nm square dot with 300nm-spacing [2]Patterned area: 3mm × 3mm [3]EB-resist thickness: 300 nm

••••by spin-coating with 5000 rpm rotation [4]Baking 160°C 20min

Clean Room Laboratory

• Electron beam lithography

Dry etching process

- [1] Etching gas: CF_4
- [2]Vacuum 3.0×10^{-3} Pa
- [3]Gas pressure9.2Pa
- [4]RF power: 400W
- [5] Etching rate: $0.1 \,\mu$ m/min

Resist removal

Silicon surface after etching

Dry-etching

Embedding of permalloy

[1]material: permalloy(Ni₈₀Fe₂₀)
[2]Vacuum 3.0×10⁻⁶Torr
[3]Accelerating voltage 4kV
[4]Deposition rate 1.0Å/sec

Embedding of permalloy film by electron beam deposition

Chemical mechanical polishing

flatting

[1]Polishing chemicals: Si wafer

grain-size~20nm

[2]pH 11

[3]polishing rate: 60nm/min

Laboratory

EB deposition

RF magnetron sputtering

Buried permalloy dot array

Observation

• AFM/MFM

FE-SEM

1µm square dot array

AFM

MFM

Square dots

SEM observation

300nm × 100nmsquare dot, 300 nm space

Cross sectional SEM observation

Dot depth?

Cross section SEM image of Line and space pattern (width =100nm)

0. 3μm

MFM observation of unpatterned permalloy film

AFM and MFM observation of 300 nm x 100 nm dot array

AFM Line scan •••Surface roughness~10nm

MFM image •••magnetization axis along the longer side direction

Comparison between two scans after magnetization in opposite direction

5kOe 🧲

MFM-image for different scanning direction

Scan-direction dependence

Pattern variation with scan direction

VSM measurement

Perpendicular

100nm circular dots with 300 nm spacing

Surface roughness ~10nm

VSM measurement of circular dot array

MFM measurement of circular dots

Demagnetized

Magnetic field applied

Perpendicular to the plane

Influence of stray field from the MFM probe tip

Recording by first scan

Models to explain MFM images

MFM image of 300nm x 100nm dot with a low-moment probe tip

MFM

300nm x 100nm dot (wide scan) with a low-moment probe tip

AFM

MFM

Simulation by Nakatani

Observation of dot-array structures using magnetically induced second harmonic generation (MSHG)

Laboratory

 Nonlinear MO measurement system

Polar Kerr configuration

Azimuthal angle dependence of SHG from unpatterned permalloy film

Unstructured permalloy film: $H=\pm 2.5$ kOe

Azimuthal angle dependence of SHG from unpatterned Si wafer

 $H=\pm 2.5kOe$

Azimuthal angle dependence of SHG from GaAs wafer

Azimuthal angle dependence of MSHG from $1\mu m$ square dot array

Nonlinear Kerr rotation In 1µm square dots

Azimuthal angle dependence of MSHG from 300nm x 100nm rectangular dot array (Longitudinal)

 $H=\pm 4kOe$

Azimuthal angle dependence of MSHG from 300nm x 100nm rectangular dot array (Polar)

 $H=\pm 6kOe$

Nonlinear Kerr rotation in rectangular dot array

Summary

- Square, rectangular and circular dot arrays of 0.1-1 μ m in dimension buried in Si wafer have been successfully obtained by Damascene technique using EB lithography
- MFM observation in square dot clearly shows closure domain pattern.
- MFM images of smaller dots show influence of magnetic field from the probe tip
- MSHG reflects symmetry of dot-arrangements